Дистилляция. Справка

Слово «дистилляция» произошло от латинского distillatio, что в буквальном переводе означает «капание».
В общем случае дистилляция применяется для того, чтобы разделить жидкую смесь веществ на фракции, различные по своему составу. Метод дистилляции эффективен для разделения веществ, температура кипения которых различна.

Дистилляция активно применяется для нефтепереработки: с ее помощью производится бензин, керосин и смазочные масла. Так же путем дистилляции можно отделять жидкости от твердых веществ, что используется, например, при опреснении морской воды.

Нам же, простым обывателям, процесс дистилляции интересен с точки зрения выделения этилового спирта из различных спиртосодержащих смесей.

Базовая технология дистилляции — перегонка

Процесс дистилляции состоит, грубо говоря, из двух этапов. Первый этап — частичное испарение дистиллируемой жидкости, т.е. превращение ее в пар. Второй этап – это конденсация полученного пара, т.е. возвращение вещества в жидкую форму путем его охлаждения. Хочу напомнить, что температуры кипения извлекаемой жидкости и остальной смеси должны отличаться друг от друга.

Для простоты будем называть базовую технологию дистилляции перегонкой. Для перегонки необходимо нагреть первоначальную смесь. При достижении определенной температуры жидкость, которую необходимо выделить из смеси, начнет испаряться и преобразовываться в пар. Получившийся пар мы должны охладить, что позволит снова превратить его в жидкость, но уже отделенную от первоначальной смеси.

Логично, что при нагревании смеси первыми перегоняются самые летучие жидкости, у которых самая маленькая температура кипения. Следом перегоняются вещества менее летучие, температура кипения которых выше, чем у ранее выделенных веществ. После окончания перегонки в кубе останутся только недистиллируемые вещества.

Простейший дистиллятор

Дистиллятор – это оборудование, позволяющее осуществить перегонку. Из чего он должен состоять? В первую очередь нам необходим куб (1), в котором смесь будет нагреваться. Полученный в результате нагрева пар направляется по наклонному патрубку (2) в конденсатор (3). Через конденсатор постоянно протекает холодная вода, за счет которой пар охлаждается и снова обращается жидкость. Затем капли полученной жидкости стекают в приемную емкость (4).

Для удобства на кубе, а так же на вертикальной части патрубка могут устанавливаться термометры. Первый будет показывать температуру нагреваемой смеси, второй — температуру паров, поступающих в конденсатор.

Основным материалом для изготовления лабораторных дистилляторов является стекло, а для соединения стеклянных частей используют резиновые или стеклянные трубки. Промышленное же оборудование чаще состоит из керамических или металлических элементов.

Что касается этилового спирта, более конкретно о его дистилляции предлагаю поговорить в .

Дистилляция (от лат. distillatio - стекание каплями) - перегонка, разделение жидких смесей на отличающиеся по составу фракции. Процесс основан на различии температур кипения компонентов смеси.

Хорошо всем известный пример использования дистиллированной воды - заливка в аккумуляторы автомобиля. В быту же дистилляторы не нашли широкого применения.

И дело здесь совсем не в непригодности дистиллированной воды для питья. Вредность такой воды из-за отсутствия в ней «полезных» минеральных веществ - это, скорее, укоренившийся предрассудок. Дистиллированная вода действительно имеет невысокие вкусовые качества, часто ее вкус характеризуют как «затхлый». Однако с точки зрения влияния на здоровья нет никаких свидетельств того, что дистиллированная вода непригодна для питья.

Ограниченность же применения дистилляторов в быту объясняется следующими причинами:

Во-первых, бытовые дистилляторы имеют малую производительность (около одного литра в час).

Во-вторых, в бойлере дистиллятора постоянно образуются осадок, накипь и т.п., которые надо вычищать.

В-третьих, дистилляторы излучают тепло и в довольно значительных количествах.

В-четвертых, дистилляторы потребляют значительное количество электроэнергии, что для многих применений делает их использование менее рентабельным, чем обратный осмос (способ очистки воды, при котором вода, проходит через специальную полупроницаемую мембрану) или деминерализация на ионообменных смолах.

В настоящее время алкогольная продукция достаточно часто используется в нашей жизни. Но, горячительные напитки приносят удовольствие только если они отличаются высоким качеством. Этого можно достичь, используя правильные способы его получения. В связи с этим важно знать основные методы перегонки алкоголя: дистилляция спирта и его ректификация.

Дистилляция алкоголя

Само слово «дистилляция» имеет латинское происхождение и означает «стекание каплями». Обычно такой метод применяется во многих сферах жизни для разделения жидкости на компоненты, отличающиеся между собой составом. Не применяется в том случае, если фракции, входящие в состав жидкости различаются температурой кипения.

Дистилляция используется в нефтеперерабатывающей промышленности для производства бензина, керосина и смазочных масел. Процесс опреснения морской воды также основан на данном методе.

Но нас такой способ интересует с целью выделения этилового спирта из спиртосодержащих жидкостей.

Дистилляцией или перегонкой алкоголя называют явление, в результате которого происходит испарение летучих соединений из перебродившей смеси. Эти компоненты, оседая в виде конденсата, образуют самогон. Для создания самогона используется специальный аппарат – дистиллятор, который представляет собой перегонный куб.

Сам процесс перегонки несложный и состоит из двух шагов:

  • Преобразование дистиллируемой жидкости в пар.
  • Конденсация пара, тем самым вещество вновь возвращается в жидкую форму посредством охлаждения.

При этом температуры кипения спирта, который нам необходимо извлечь, составляет +78С, у воды — +100С, что приводит к быстрому испарению спирта. В процессе охлаждения происходит конденсация спирта. Дистиллят допустимо перегонять не один раз для повышения концентрации спирта.

Самогон, полученный в начале, отличается как сильной крепостью, так и высоким уровнем содержания в нём вредных веществ: эфиров и альдегидов. В связи с этим, он категорически непригоден для употребления внутрь в качестве алкоголя, лучше его вылить или найти ему другое применения, например, разжечь им костёр.



Процесс перегонки

Также не рекомендуется использовать так называемые «хвосты», содержащие сивушные спирты и метанол. Их можно определить по неприятному запаху. Они возникают после падения крепости самогона до 40%, но, в отличие от первых непригодных капель, «хвосты» разрешается использовать для повторной перегонки.

Завершение перегонки обычно определяется следующим способом: производится поджигание абсорбирующей жидкости. Если она начинает гореть, то дистилляцию останавливают.

Перегонка спирта, согласно классификации, делится на следующие разновидности:

  • простая – проводится в один этап;
  • фракционная – проводится в несколько этапов;
  • ректификация.

Простая перегонка спирта является начальным этапом второй разновидности дистилляции.

Простая дистилляция


Схема процесса дистилляции

Данный метод использовался ещё в Древнем Египте для производства краски из испорченного винограда. Для этого использовались кубы из меди, конструкция которых включала в себя перегонную ёмкость, конденсатор, отводную трубу для испарения. Поначалу эти агрегаты применялись в производстве краски, духов, а спустя время их стали использовать для создания крепкой алкогольной продукции.

В настоящее время простая перегонка представляет собой технологию перегонки спирта, при которой не происходит полного удаления вредных примесей. Даже повторное проведение данного процесса не очистит напиток в полной мере. Крепость его на выходе равна 25-30% об.

Перегонка спирта проводится в несколько этапов:

  • Изготовление браги. Существует множество методов её производства. Простейший из них заключается в том, чтобы растворить дрожжи в воде с температурой 30С, добавить к ним приготовленный заранее сахарный сироп. Далее следует плотно закрыть ёмкость крышкой и держать в тёплом месте в течение недели.

Конечный продукт имеет аромат и привкус продуктов, использованных для браги, в связи с чем он подвергается ароматизации. Например, в дубовых бочках происходит настойка рома и коньяка, а в джин добавляют миндаль или хвойную эссенцию.

Метод посложнее предполагает использование картошки, которую в измельчённом виде необходимо залить водой и нагреть. Крахмал, содержащийся в картофеле, преобразуется в сахара. Затем добавляет дрожжи и ставим в тёплое место.

  • По окончанию брожения проводится процеживание браги, которую далее следует влит в агрегат для дистилляции.
  • Происходит испарение браги.
  • Через отводящую трубку возникший пар оказывается в холодильнике, где, конденсируясь, он превращается в дистиллят.

Кроме того, для избавления от неприятных запахов продукт нередко подвергается химической обработке, что может негативно влиять на здоровье человека.


Фракционная дистилляция

Такой метод ещё называют дробным, поскольку он проводится в несколько этапов. Он требует больше внимания и терпения.

В основе фракционной дистилляции лежит разница в температуре кипения составляющих, входящих в состав жидкости. Суть метода заключается в разделении спирта на фракции в ходе перегонки, с последующим их распределением в разные ёмкости.

Дистилляция этанола не предполагает использование «голов» или первой фракции, в связи с их неприятным запахом и повышенным уровнем вредности. Конденсат, собранный на этом этапе представляет опасность не только для приёма внутрь, но и для наружного применения. При попадании такой фракции на кожу может произойти её повреждение, например, слезет кожа. «Головы» в основном используются для разжигания дров. По завершению выделения данной фракции необходимо заменить приёмную ёмкость.


У средней фракции (тело самогона) отсутствует цвет и резкий запах. На этом этапе происходит отбор самогона высокого качества. Отбор этой части самогона происходит во время горения при температуре до 95С, при этом крепость составляет от 35 до 45%. В интервале от 78 до 83С выделяются наиболее чистые водно-спиртовые массы, не содержащие вредных для здоровья человека примесей.

Конечная фракция или «хвосты» характеризуется сильным, резким запахом по причине содержания в нём сивушных масел и тяжёлых примесей. Также необходимо не допускать их попадания в основную часть фракции, для этого на данном этапе необходимо заменить приёмную ёмкость. «Хвосты» обычно непригодны для приёма внутрь по причине их запаха и порчи качества основной части самогона. Но их возможно использовать для повторной перегонки, добавляют в новую брагу или же добавляют в самогон для любителей такого вкуса.

Для повышения качества алкоголя рекомендовано проводить ещё одну очистку углём, развести с чистой водой, либо провести повторную перегонку, проводя этот процесс медленнее, чем в первый раз. Многократное повторение дистилляции может привести к возникновению азеотропной смеси, состав которой не меняется при последующих перегонках.

В связи с тем, что произвести спирт высокого уровня очистки путём дистилляции, пусть даже и дробной, невозможно по причине наличия у него аромата и вкуса, применяется ректификация.

Сам процесс ректификации представляет собой разделение смеси, в основе которой лежит процесс теплообмена между парами и жидкостью.

Многие ошибочно считаю ректификацию спирта повторной перегонкой, но не следует путать эти два понятия.


Данный метод предполагает использование ректификационной колонны, которая представляет собой аппарат, разделяющий жидкость на компоненты. При этом в итоге получается чистый спирт, не имеющий резких запахов, вкуса, вредных веществ. Ректификация без использования данного аппарата даёт на выходе алкоголь с меньшей крепостью.

При нагревании ёмкости с самогоном начинается кипение жидкости, в результате которого происходит образование пара. Он поднимается по ректификационным колоннам наверх, попадая в агрегат, где происходит конденсация пара и называемый дефлегматором. Этот аппарат охлаждается водой. При попадании паров на охлаждённую поверхность, происходит его конденсация, в результате которой образуется флегма. Флегма стекает в ёмкость. Пар, который поднимается наверх и флегма, которая стекает вниз, взаимодействуют друг с другом, образуя процесс теплообмена. Ректификация предполагает постоянное взаимодействие между паром и жидкостью. В итоге наверху расположены вещества, имеющие более низкую температуру кипения, они трансформируются в конденсат и стекают в ёмкость.

Этот способ перегонки используется при получении чистого этилового спирта. Такой спирт лежит в основе водки. Также ректификация наиболее безопасна, поскольку позволяет делать крепкие алкогольные напитки, исключая наличие большого количества примесей и отравление химикатами при его употреблении.

Какой метод лучше?

Для определения наилучшего способа перегонки спирта необходимо решить, что для вас важнее: тонкий вкус и аромат алкоголя или же чистый спирт.

В ходе разных способов перегонки на выходе образуются разные напитки: дистилляция используется для получения самогона, коньяка, виски, текилы, джина; чистый спирт является продуктом ректификации.

Кроме того, нужно понимать, что после дистилляции, даже фракционной, итоговый напиток имеет аромат и привкус первоначального сырья, в то время как в процессе ректификации вкусовые и ароматические свойства уничтожатся.

Таким образом, нельзя говорить, что тот или иной метод лучше, поскольку на выходе они дают разный результат.

Основные виды концентрирования, очистки и разделения веществ.

В настоящее время существует значительное количество методов разделения, концентрирования и очистки веществ и создаются все новые в связи с актуальностью задач получения и анализа суперчистых материалов с заданными свойствами, например, для наноэлектроники, полупроводниковой и вычислительной техники, биологических препаратов нового поколения. Наиболее распространенными из них являются:

Ø методы испарения (перегонка, упаривание и отгонка);

Ø озоления;

Ø экстрагирования;

Ø осаждения и соосаждения;

Ø управляемой кристаллизации;

Ø сорбционные и ионообменные методы;

Ø электрохимические методы.

Применение каждого из методов очистки определяется как выбранной методикой анализа, так и физико-химическими свойствами системы (агрегатное состояние компонентов, химическая и термическая устойчивость веществ, содержание определяемого компонента в исходной пробе и т. д.). Как правило в основе процесса очистки лежит либо химическая реакция (реакции осаждения, ионного обмена, окисления), либо физический процесс (диффузия, адсорбция и десорбция, испарение и конденсация) (рисунок 2.1).

Рисунок 2.1 – общие принципы и способы разделения компонентов на фазы (концентрирования и разделения веществ).

Учитывая многообразие способов концентрирования веществ, поясним значение некоторых терминов.

Разделение –это операция, в результате которой компоненты, входящие в исходную смесь, отделяются друг от друга.

Концентрирование – это процесс, в результате которого содержание определяемого или очищаемого компонента в веществе повышается, по сравнению с его исходным содержанием. Концентрирование может быть абсолютным и относительным .

Абсолютное концентрирование – это перевод микрокомпонента (примеси) из исходного образца большого объема или массы, в новый образец с меньшим объемом (массой). Такое концентрирование происходит при процессах экстрагирования, осаждения, перегонки и т. д.



Относительное концентрирование (обогащение) заключается в увеличении содержания интересующего компонента в исходном образце по отношению к другим компонентам или растворителю. Например, при упаривании раствора или озолении пробы.

Испарение – процесс перехода вещества из жидкой или твердой фазы в газообразную, который осуществляется тем или иным путем. Методы испарения можно реализовать в виде перегонки и отгонки (упаривания, выпаривания и возгонки).

Перегонка – это разделение жидких смесей, основанное на переводе летучего компонента в газовую фазу путем испарения его и последующей конденсацией.

Конденсат – продукт, образующийся при охлаждении газовой или паровой фазы.

Отгонка – удаление летучих компонентов из твердых веществ (порошков, кристаллов) или растворов при нагревании.

Упаривание – метод отгонки, в процессе которого происходит удаление части растворителя и летучих примесей в следствии длительного нагрева пробы. При упаривании часть основы (обычно растворителя) остается в образце.

Выпаривание (до суха) сопровождается полным удалением растворителя и летучих компонентов из исходного образца.

Возгонка или сублимация – это процесс, при котором твердое вещество переводят в газовую фазу минуя стадию плавления. Продукт конденсации, образующийся в процессе возгонки называют сублиматом .

Озоление – метод, при котором исходный образец путем нагрева переводят в минеральный остаток, называется золой . Его используют обычно при анализе различных веществ на содержание микроэлементов или общего количества органических веществ (анализ почв). Различают сухое озоление , когда пробу вещества калят в тигле при нагреве не выше 500ºС, и влажное (мокрое) . При влажном озолении исходную навеску вещества помещают в тигель и обрабатывают либо кислотами, либо ще6лочами, а образующиеся летучие продукты удаляются в процессе ее прокаливания. Озоление можно рассматривать как частный случай минерализации пробы.

Метод перегонки (дистилляция)

Перегонка (дистилляция) относится к группе методов, базирующихся на термическом испарении веществ, и применяется для очистки воды и разделения органических жидкостей с относительно близкими температурами кипения . Она основана на различии в летучести веществ . Сущность процесса перегонки заключается в том, что в испарителе смесь веществ (обычно раствор) нагревают выше температуры кипения наиболее летучего компонента. Образовавшаяся таким образом газовая (паровая) фаза имеет более высокую концентрацию летучего компонента, по сравнению с исходным раствором. Эту фазу затем охлаждают (конденсируют) в холодильнике, получая на его выходе конденсат (жидкость либо твердое вещество), обогащенный наиболее летучим соединением. При необходимости процесс повторяют до тех пор, пока не будет достигнута необходимая степень разделения или концентрирования компонентов.

Процесс перегонки можно охарактеризовать количественно, рассчитав коэффициент распределения D . Пусть имеется 2-х компонентная идеальная система А + В (отсутствует межмолекулярное взаимодействие, а компоненты химически инертны по отношению друг к другу). При нагревании такой системы до температуры испарения, например компонента А , получим газовую фазу, которая находится в равновесии с оставшимся раствором. При этом газовая фаза обогатится более летучим компонентом А , а в оставшемся растворе возрастет соответственно концентрация компонента В. Молярные доли компонентов А и В в обеих фазах связаны соотношением:

где у А и у В – молярные доли в газовой фазе; a = 1/D – коэффициент разделения (относительная летучесть); х А и х В – молярные доли компонентов в жидкой фазе. Учитывая, что x + y = 1 – сумма молярных долей компонентов в исходном растворе, и x A + x В = x; y A + y В = y, то коэффициент распределения D можно вычислить из соотношения:

D = . (2.2)

Формула (3.2) может быть преобразована с помощью уравнения Клаузиуса-Клапейрона в выражение для приближенного вычисления летучести компонентов:

lga = 8,9 . (2.3)

где Т кип (А) и Т кип (В) – температуры кипения разделяемых компонентов А и В соответственно. Из формулы 2.3 следует, что чем выше разница в температурах кипения разделяемых компонентов, тем выше степень их разделения в одностадийном процессе.

В пищевой, фармацевтической и химической промышленности дистилляция - это один из способов водоподготовки, который применяется наряду с ионным обменом. Для аналитических целей пригодна вода либо однократной очистки (дистиллят), либо двукратной – бидистиллят . Одностадийная дистилляция обычно используется для разделении веществ со значительной разницей в температурахкипения . При этом анализируемым компонентом может обогащаться как жидкая фаза, остающаяся после дистилляции, так и газовая фаза, а значит и образующийся конденсат Этот метод непригоден для азеотропных смесей (системы, в которых состав газовой и жидкой фазы одинаковы и находятся в состоянии равновесия). В этом случае полного разделения компонентов достичь невозможно.

Метод ступенчатой дистилляции (ректификации) осуществляют в специальных колоннах и используют при разделении на фракции многокомпонентных гомогенных смесей жидкостей с достаточно близкими температурами кипения . Он широко распространен в перерабатывающей промышленности, в частности, при получении продуктов перегонки нефти, таких как: петролейные эфиры, бензины, керосины и масла.

При очистке продуктов с низкой термической устойчивостью, присущей для некоторых органических и биологически активных веществ, осуществляют молекулярную дистилляцию - низкотемпературная дистилляция в высоком вакууме , которую проводят при остаточном давлении 1,3 – 1,8 кПа и ниже. В этом случае процесс разделения и концентрирования может протекать либо без нагрева, либо при температурах, значительно ниже комнатной. Молекулярная дистилляция используется при производстве фармацевтических препаратов и биоактивных пищевых добавок.

Методы отгонки.

Отгонку делят на простую или выпаривание и возгонку (сублимацию ). При выпаривании вещества удаляются в форме готовых летучих соединений. Осуществить выпаривание можно различными способами: нагреванием снизу (водяные и песчаные бани); сверху (инфракрасные лампы), используя сушку под вакуумом (лиофильная сушка ) - для исключения потерь связанной влаги или термически неустойчивых компонентов. Выпаривание позволяет к примеру, значительно повысить концентрацию солей в растворе (получение рапы).

Частный случай выпаривания – упаривание до суха . Этот прием применяют, когда необходимо или значительно повысить концентрацию нелетучего компонента, или растворитель и летучие примеси мешает проведению анализа. При упаривании вещество сначала длительно осторожно нагревают (выпаривают) до образования практически сухого остатка. Иногда применяют дополнительно прокаливание сухого остатка при более высокой температуре, чтобы удалить следовые количества растворителя. Качество выпаривания можно контролировать по изменению массы сухого остатка.

Отгонка будет более эффективна, если на вещество воздействовать еще и химически с помощью реагентов – сухая и мокрая минерализация . Минерализацию образцов широко используют в элементном органическом анализе. Пробу, органическую или биологическую, помещают в трубчатую печь или автоклав, через которую продувают воздух или кислород. В процессе окисления (сжигания) ее образуются летучие соединения такие, как CO, CO 2 , N 2 , SO 2 , SO 3 , которые легко могут быть определены с помощью специальных приборов – газоанализаторов или, после селективного поглощения (адсорбции ) газов, по стандартной методике. При сухой минерализации погрешность анализа выше, чем при мокрой . Это обусловлено потерями легколетучих компонентов и отчасти нелетучих, захватываемых каплями образовавшегося аэрозоля. Снижения потерь вещества при сухой минерализации можно добиться при использовании автоклавов (устройства для нагрева при повышенном давлении).

Мокрая минерализация заключается в воздействии на пробу минеральных кислот или щелочей в комплексе с окислителями (H 2 O 2 , KClO 3 , KMnO 4), растворение устойчивых соединений проводят в автоклавах при нагреве и повышенном давлении, а определение – в специальных камерах, соединенных с анализатором. Эффективно также применение ряда твердых, жидких и газообразных минерализаторов, способных селективно переводить некоторые труднорастворимые вещества в газовую фазу (галогены и галогеноводороды, CCl 4 , AlCl 3 , BBr 3).

Сублимация это вариант отгонки, который заключается в разделении веществ путем перевода одного или нескольких компонентов при нагревании в газовую фазу минуя жидкую . Для этой цели применяют устройства - сублиматоры , состоящие из испарителя и зоны сублимации с более низкой температурой (вплоть до отрицательных). В зоне сублимации при конденсации газов вновь образуется твердое вещество (сублимат). Этот метод можно использовать в том случае, когда разделяемые компоненты, например, плохо растворимы или трудно плавятся. Ограниченное применение сублимации обусловлено малым количеством пригодных для этой цели матриц. Примером сублимационной очистки в аналитических целях служит отделение кристаллического иода от нелетучих примесей.

На качество очистки при сублимации влияют размер частиц и однородность распределения компонентов в них. Поэтому более качественной будет отгонка в тщательно измельченных пробах, а также в тех, где отгоняется основное вещество (макрокомпонент) , а не примеси (микрокомпоненты ).

Для низко температурного полного обезвоживания неустойчивых веществ применяют низкотемпературную отгонку под вакуумом – сублимационная сушка , которую можно рассматривать как вариант лиофильной сушки, выполняемой в болеежестком режиме.

Метод экстрагирования.

Метод экстракционного разделения (экстракция ) широко применяется не только в химическом анализе, но и на производстве, так как позволяет сконцентрировать анализируемое вещество в небольшом объеме раствора. Процесс экстракции основан на избирательном извлечении одного или нескольких компонентов из смеси жидких или твердых фаз с помощью органического растворителя (экстрагента) не смешивающегося с водой. В основе процесса экстракции - различие растворимости компонентов смеси в водной и органическойфазах . В органических веществах (спиртах, эфирах, бензинах и т.д.) хорошо растворяются многие неорганические соли (нитраты, хлориды, роданиды) и комплексные соединения.

Более эффективно извлечение происходит при применении смеси экстрагентов. Явление возрастания степени извлечения при воздействии смеси экстрагентов называют синергизмом. Степень извлечения можно также повысить, добавляя в экстрагент экстракционный реагент, например, дитизон или оксихинолин, формирующие комплексы со многими катионами металлов. В результате проведения экстракции получается экстракт , который может быть как в виде раствора, так и сухого вещества (сухие экстракты ). Сухие экстракты обычно образуются из жидких путем их высушивания каким-либо способом.

К основным понятиям этого метода относят:

Ø реэкстракция – процесс извлечения выделяемого компонента из экстракта в водную или иную фазу;

Ø реэкстрагент – раствор реагента (чаще водный), используемый для извлечении вещества из экстракта;

Ø соэкстрагент – органический или иной растворитель, применяемый в смеси с основным экстрагентом с целью повышения селективности процесса или степени экстракции;

Ø синергизм – существенное повышение степени извлечения (экстракции) при использовании смеси экстрагентов, по сравнению с действием каждого из них по-отдельности;

Ø экстрагент – органический или иной растворитель, извлекающий компонент из водного раствора;

Ø экстракционный реагент – составная часть экстрагента, реагент, образующий с извлекаемым веществом хорошо растворимое в экстрагенте соединение, чаще всего - органический комплекс;

Ø экстракт – органическая фаза, содержащая выделяемый компонент;

Ø экстрактор – аппарат для проведения экстракции.

Конструкции экстракторов достаточно разнообразны (рис. 2.2) и подбираются в зависимости от условий проведения процесса и применяемых реагентов.

Рисунок 2.2 – схемы экстракторов различного назначения

(в – водная фаза; о – органический растворитель):

а – делительные воронки (случай, когда плотность экстрагента выше, чем водной фазы); б – прибор непрерывной экстракции (при плотность экстрагента ниже, чем воды).

Различают: периодическую экстракцию (выполняется отдельными порциями экстрагента), непрерывную (при постоянном перемещении фаз друг относительно друга, при этом водная фаза обычно неподвижна) и противоточную , где органическая фаза постоянно перемещается через серию экстракционных трубок, содержащих свежие порции водного раствора. В качестве простейшего экстрактора можно использовать делительную воронку с двумя кранами (рис. 2.2 – а), которая применяется для выполнения периодической экстракции . После заполнения воронки водно-органической смесью раствора, ее энергично встряхивают и дают отстояться, через нижний кран осторожно удаляют водный раствор (если плотность органического реагента меньше, чем водного), стараясь, чтобы экстракт остался в воронке. Разделение фракций протекает с высокой скоростью в течении 1 – 3 минут. Если плотность органической фазы выше, чем водной, то в нижней части воронки будет скапливаться экстракт, который затем также осторожно удаляется.

ДИСТИЛЛЯЦИЯ (лат. destillatio стекание каплями; син. перегонка ) - процесс очистки жидкостей от растворенных в них нелетучих примесей или разделения смесей жидкостей на фракции, отличающиеся по составу, путем испарения и последующей конденсации образующихся паров; широко применяется в фармакологической и лабораторной практике.

Различают простую и фракционированную Дистилляцию. Простая Дистилляция заключается в одноразовом испарении жидкости с непрерывным отводом паров и их последующей конденсацией. Получающийся конденсат называют дистиллятом, а неупарившуюся часть жидкости - кубовым остатком. Получить чистый легко летучий компонент простой Д. обычно не удается. Простую Д. целесообразно применять лишь в тех случаях, когда разница в температурах кипения жидкостей, входящих в состав смеси, достаточно велика. Фракционированная Д. заключается в многократном повторении процесса испарения и конденсации. Дистилляты разного состава собирают в несколько приемников (рис. 1). Необходимо отметить, что дистиллят в приемнике I более богат низкокипящим компонентом, в приемнике II содержание этого компонента ниже и т. д. Каждый из этих дистиллятов (фракций) в свою очередь вновь подвергают перегонке.

Для увеличения эффективности разделения и уменьшения числа перегонок используют так наз. дефлегматоры (рис. 2). Сущность действия дефлегматора состоит в том, что пар конденсируется в нем частично и образующийся при этом дистиллят возвращается в камеру испарения. Оставшийся в дефлегматоре пар обогащается легко летучим компонентом, т. к. в первую очередь конденсируются труднолетучие компоненты.

В промышленности процесс фракционированной Д. автоматизирован и осуществляется в специальных аппаратах, называемых ректификационными колоннами (см. Ректификация). Некоторые смеси жидкостей не разделяются путем Д. на составные компоненты. Нераздельнокипящие смеси называют азеотропами (см. Азеотропные смеси). Жидкости, образующие такие смеси, можно разделить Д. на компонент, находящийся в избытке в азеотропе, и азеотроп.

Для очистки веществ, не смешивающихся с водой и имеющих высокие температуры кипения, при которых эти вещества могут разлагаться, применяют Д. с водным паром. Такую Д. осуществляют путем пропускания перегретого водяного пара через перегоняемую жидкость.

Д. с водяным паром находит широкое применение в токсикол, исследованиях (см. ниже), в фармакол. и парфюмерной промышленности для получения эфирных масел и ароматных вод.

Если перегоняемое вещество имеет слишком высокую температуру кипения, применяют Д. в вакууме, к-рая основана на понижении температуры кипения при уменьшении величины давления над перегоняемой жидкостью.

Для очистки и разделения веществ с большим мол. весом (массой), разлагающихся даже при вакуум-дистилляции, используют молекулярную Д. В этом случае перегонка производится при давлении 10 -3 -10 -4 мм рт. ст. и температуре более низкой, чем температура кипения перегоняемых веществ. Расстояние от поверхности испарения до поверхности конденсации должно быть меньше средней длины свободного пробега молекул в данных условиях. Температура поверхности конденсации должна быть на 100° ниже температуры поверхности испарения. При молекулярной Д. жидкость не кипит, а испаряется с поверхности. Поэтому для устранения перегрева глубинных слоев жидкости прибор должен иметь такую конструкцию, чтобы толщина слоя перегоняемой жидкости была возможно меньшей. Так, при перегонке рыбьего жира толщина жидкой пленки составляет 0,001-0,005 мм, что соответствует 400-2000 мономолекулярным слоям, а время его испарения составляет ок. 0,001 сек. Изменение состава пара по отношению к составу жидкости определяется различными скоростями испарения перегоняемых компонентов.

При молекулярной Д., в отличие от других видов Д., можно разделять смеси компонентов, имеющих одинаковые температуры кипения.

Молекулярная Д. находит широкое применение при очистке и разделении термически нестойких органических веществ, напр, для выделения витаминов из рыбьего жира и растительных масел.

Дистилляция при судебно-токсикологических исследованиях

Д. с водяным паром применяется в химико-токсикол. анализе для выделения из биол, объектов различных летучих веществ: синильной и некоторых карбоновых к-т, спиртов, эфиров, альдегидов, кетонов, галогенопроизводных, фенолов и фенолокислот, ароматических углеводородов, элементорганических соединений, производных нитробензола и анилина, летучих соединений фосфора, алкалоидов и других веществ.

С целью предотвращения потерь синильной к-ты в процессе такой перегонки первую фракцию дистиллята собирают в приемник, содержащий р-р сильной щелочи, а вторую и последующие фракции - в отдельные приемники. Путем Д. с водяным паром из внутренних органов трупов, биол, жидкостей, рвотных масс, пищевых продуктов и других вещественных доказательств изолируются как хорошо растворимые в воде, так и практически нерастворимые в воде вещества. Этот прием особенно выгодно использовать при изолировании веществ, кипящих при высокой температуре или разлагающихся в момент кипения. При Д. с водяным паром летучими становятся и те вещества, которые растворяются в воде в различных соотношениях.

В судебно-токсикол. исследованиях находит также применение и фракционированная Д.

Аквадистилляторы

Аквадистилляторы (АД; прежнее название - перегонные аппараты) представляют собой установки, предназначенные для производства апирогенной воды (см. Вода апирогенная). Принцип конструкции у различных АД общий: исходная вода нагревается, доводится до кипения, испаряется, а пар затем конденсируется и охлаждается.

В 19 в. для Д. использовали луженые перегонные кубы, которые непрерывно совершенствовались. В результате к середине 20 в. перегонные аппараты циклического действия и бидистилляторы были заменены оборудованием непрерывного действия, и их дальнейшее совершенствование проводится по пути создания АД, расходующих меньшее количество тепла и исходной воды, имеющих эффективное сепарирующее устройство, снабженных устройствами для создания асептических условий сбора, хранения и подачи на рабочие места полученной воды, элементами автоматизации процессов получения, хранения и стерилизации апирогенной воды. Современные АД являются комплексными установками, состоящими из водоподготовителей, сепараторов, конденсаторов, холодильников, аллонжей (переходные трубки к сборнику) и сборников.

Большинство выпускаемых АД содержит встроенный в испаритель конструктивный элемент для нагревания воды; такие АД называются автономными. АД, не имеющие встроенного в испаритель конструктивного элемента для нагревания воды, называются зависимыми.

АД могут содержать несколько последовательно действующих испарителей; такие АД называются многоступенчатыми (частные случаи многоступенчатых АД - двухступенчатые, трехступенчатые и т. д.). Наибольшее распространение в мед. практике получили одноступенчатые АД. В большинстве АД конденсация пара производится при атмосферном давлении. Такие АД называются атмосферными.

АД, конденсация пара в которых осуществляется в вакууме, носят название вакуумных. В компрессионных АД конденсация пара производится при избыточном давлении. В отдельных ступенях многоступенчатых АД конденсация пара может производиться при различном давлении. Если конденсация пара в одной ступени АД осуществляется при атмосферном давлении, а в другой - в вакууме, то такие АД называются атмосферно-вакуумными. В том случае, когда конденсация пара на разных ступенях производится последовательно при избыточном и атмосферном давлении, АД называются компрессионно-атмосферными.

В связи с тем, что состав исходной воды различен, АД снабжаются устройствами для проведения водоподготовки - водоподготовителями. На практике применяются магнитные водоподготовители, подготовка воды в которых производится под действием магнитного поля; электрохим. водоподготовители, подготовка воды в которых осуществляется с помощью электрического тока и различных хим. соединений, и хим. водоподготовители, обработка воды в которых производится хим. соединениями.

Нагрев и испарение воды в АД производится в испарителях. Пар, образующийся в испарителях, всегда содержит нек-рое количество жидкости в виде капель, что приводит к загрязнению апирогенной воды веществами, содержащимися в исходной воде. Основными причинами образования такого пара являются разрыв пузырьков на поверхности зеркала испарения, дробление жидкости и вспенивание исходной воды. При этом образуется небольшое количество относительно крупных и большое количество мелких капель, поднимающихся на большую высоту. Борьба с крупными каплями ведется с помощью правильного выбора высоты парового пространства и величины зеркала испарения в испарителе. Мелкие капли, уносимые паром, извлекаются из него в сепараторах АД.

На практике применяются центробежные, инерционные, гравитационные и комбинированные сепараторы. В центробежных сепараторах создается вращательное движение сепарируемого пара и под действием ускорений частицы влаги интенсивно выделяются из потока пара. Инерционные сепараторы имеют большую поверхность соприкосновения очищаемого пара со стенками или насадкой сепаратора, на которой и оседают капли воды. В гравитационных сепараторах капли воды выпадают из потока пара под действием силы тяжести. В комбинированных сепараторах используются два или более принципа сепарации, а сама сепарация обычно производится ступенчато.

Очищенный в сепараторе пар поступает в конструктивные элементы АД, предназначенные для конденсации и охлаждения апирогенной воды. На практике применяются конденсаторы и холодильники различных типов: с поверхностью теплообмена, образованной стенками аппарата; погружные пластинчатые с гладкими и ребристыми стенками.

Сбор и хранение апирогенной воды производится в специальных сборниках. Обычно используют сборники двух типов: с конструктивным элементом для нагрева и охлаждения апирогенной воды и без него.

Установлен параметрический ряд АД, используемых мед. учреждениями. АД должны иметь производительность 1 - 1,5; 4; 10; 20 л/час и т. д.

Определен параметрический ряд сборников - б, 16, 40, 100 и 250 л.

Библиография: Багатуров С. А. Основы теории и расчета перегонки и ректификации, М., 1974, библиогр.; Воскресенский П. И. Техника лабораторных работ, М., 1973; Жаров В. Т. и Серафимов Л. А. Физико-химические основы дистилляции и ректификации, Л., 1975, библиогр.; Касаткин А. Г. Основные процессы и аппараты химической технологии, М., 1971, библиогр.; Цибиков В.Б., Шведов Ю.А. и Белова О. И. Способы подготовки воды и их применение для получения дистиллированной воды, Мед. техника, № 5, с. 36, 1971; Швайкова М. Д. Токсикологическая химия, с. 65, М., 1975; Шведов Ю. А. и Богоудинов Р. Д. Деминерализатор, Мед. техника, № 1, с. 35, 1969; Шведов Ю.А., Мееркоп Г.Е. и Соколова А. Ф. Сборники для хранения дистиллированной или обессоленной воды, Фармация, № 4, с. 60, 1972.

В. А. Попков; А. Ф. Рубцов (суд.), Ю А. Шведов (техн.).